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The forced rupture of single chemical bonds under external load is addressed. A general framework is put
forward to optimally utilize the experimentally observed rupture force data for estimating the parameters of a
theoretical model. As an application, we explore to what extent a distinction between several recently proposed
models is feasible on the basis of realistic experimental data sets.
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I. INTRODUCTION

Single-molecule force spectroscopy �1� refers to the ex-
perimental observation of chemical dissociation by pulling
apart the molecular complex of interest at a constant velocity
v until the bond breaks. The evaluation of the resulting rup-
ture force data is a nontrivial task �2–8�: for one and the
same v, the rupture forces are found to be randomly distrib-
uted over a wide range, and for different v, different such
probability distributions are obtained. While both on the ex-
perimental and modeling sides a great amount of work has
led to substantial progress and sophistication, much less ef-
fort has been spent to improve the still rather basic methods
of connecting and comparing theory and experiment. This is
the subject of our present work.

Our starting point is the probability density p1�f �� ,v�
that a dissociation event occurs at a pulling force f , given the
pulling velocity v and any theoretical model with certain
model parameters �. Now, our main question is as follows:
What is the optimal estimate of those model parameters �
that can be extracted from any given set of N rupture forces
f= �f i�i=1

N and pulling velocities v= �vi�i=1
N ? Since the f i are

statistically independent, the probability of observing the
given set of rupture forces f reads

p�f��,v� = �
i=1

N

p1�f i��,vi� . �1�

The main result of our paper is that the optimal parameter
estimate is obtained by simply maximizing Eq. �1� with re-
spect to �: no other “recipe” is able to yield estimates closer
to the true parameter values systematically, i.e., on the aver-
age over many data sets f.

II. EXAMPLE

The explicit form of p1 in Eq. �1� depends on the specific
model one is considering, and similarly for the meaning and
even the number of the model parameters �. While our gen-
eral theory applies to any model, an illustrative and particu-
larly simple example is provided by the most widely used
model �1,2,9�, viewing the dissociation as a rate process of
the form ṅ�t�=−k(f�t�)n�t�, where n�t� denotes the bond sur-
vival probability and k(f�t�) the dissociation rate at the in-
stantaneous pulling force f�t�, and adopting the approxima-
tions �1,2,9�

f�t� = �vt, k�f� = exp�� + �f� . �2�

Here, � is the net elasticity of the setup and �v is the so-
called loading rate. While they are considered as known
�1,2,9�, �= �� ,�� are the two unknown model parameters in
the case of our specific example at hand. Their physical
meaning is discussed in detail, e.g., in Refs. �1,2�: k�0�
=exp��� represents the force-free dissociation rate and �kBT
the dissociation length �distance between potential well and
barrier along the reaction pathway�, where kBT is the thermal
energy. Having thus completely specified the model �1,2,9�, a
straightforward calculation yields for this particular example
the explicit result

p1�f ��,v� =
e�+�f

�v
exp	−

e�

�v

e�f − 1

�

 . �3�

III. FORMAL ANALYSIS

The quantity in Eq. �1� is called the likelihood and plays a
central role in Bayes’ theorem �10�

p���f,v� = p�f��,v�p��,v�/p�f,v� . �4�

The left-hand side represents the “likeliness” of �, given the
data f ,v, and hence is clearly of central interest for our pur-
poses. Considering also the right-hand side as a function of
�, it is equal to the likelihood from Eq. �1� times p�� ,v�,
encapsulating all our knowledge about � before the mea-
surement, times a �-independent factor 1 / p�f ,v�. We em-
phasize that we will not use the Bayesian formalism in our
actual calculations below, only in their intuitive interpreta-
tion.

Next we exploit the fact that typically a quite large set of
rupture data f is available. Thus, focusing on large N, it is
convenient to rewrite Eq. �1� as

p�f��,v� = exp�− NsN�f,�,v�� , �5�

sN�f,�,v� ª − N−1�
i=1

N

ln p1�f i��,vi� . �6�

Furthermore, we assume that the relative frequency with
which the different pulling velocities v are sampled con-
verges toward a well-defined limit ��v� for N→�. Finally,
we assume that the rupture forces f i have been sampled ac-
cording to the “true” distribution p1�f i ��0 ,vi� with unknown,
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“true” model parameters �0. Then it follows from the law of
large numbers �11� that

sN�f,�,v� → s��� ª − �ln p1�f ��,v� �7�

for N→�, where �¯ indicates an average over f and v with
weight p1�f ��0 ,v���v�. Hence, sN is an intensive, entropy-
like quantity. Observing that s���−s��0� is a relative en-
tropy of the form �ln�p1�f ��0 ,v� / p1�f �� ,v��, one can infer
�11� that s��� has a unique absolute minimum at �=�0. For
any given f and v, we denote by �*=�*�f ,v� the maximum
of the likelihood p�f �� ,v� with respect to �, or, equivalently,
the minimum of sN�f ,� ,v� in Eq. �5�. Since sN converges for
large N toward s according to Eq. �7�, also the minimum �*

of the former converges to the minimum �0 of the latter.
Consequently, for � close to �* and large N, we can expand
sN�f ,� ,v� up to second order about its minimum at �* and
the Hessian matrix of sN�f ,�* ,v� can be replaced by the
Hessian H=H��0� of s��0�, i.e.,

sN�f,�* + �,v� = sN�f,�*,v� + �†H�/2. �8�

For large N this is a very good approximation for all �
values with an appreciable weight in Eq. �5�, i.e.,

p�f��,v� � exp�− N�� − �*�†H�� − �*�/2� . �9�

Within this narrow peak region, the factor p�� ,v� in Eq. �4�,
though usually unknown in detail, can be considered as ap-
proximately constant, i.e., p�� � f ,v�� p�f �� ,v�. Given f and
v, the likelihood from Eq. �1� thus quantifies the likeliness
that the true model parameters are �.

Upon repeating the entire set of N pulling experiments
with the same set of pulling velocities v, a different set of
rupture data f will be sampled, yielding a different maximum
likelihood estimate �*. While the probability distribution of
f is given by Eq. �1� with �=�0, what can we say about the
distribution of the maximum likelihood estimates �*? To
determine its first moments, we differentiate Eq. �8� and
choose �=�0−�*, resulting in

�* − �0 = − H−1�sN�f,�0,v�/�� . �10�

Averaging over f yields zero on the right hand side, as can be
inferred from Eqs. �6� and �7� and the fact that �0 is the
minimum of s. Hence,

��* = �0, �11�

i.e., the maximum likelihood estimate is “unbiased.” An
analogous but somewhat more involved calculation �12�
yields for the second moments the result

���* − �0���* − �0�† = �NH�−1. �12�

Observing that �NH�−1 is the covariance matrix of the distri-
bution from Eq. �9�, we arrive at our first main conclusion:
For any given, sufficiently large data set f, the expected de-
viation of the concomitant maximum likelihood estimate �*

from the true parameters �0 immediately follows from the
“peak width” of the likelihood from Eq. �1�, considered as a
function of �.

Similarly, from the higher moments one can infer �12�
that �* is Gaussian distributed, yielding with Eq. �9� our

second main conclusion: Apart from the peak position and a
normalization factor, the likelihood from Eq. �1� for one
given data set f looks practically the same as the distribution
of the maximum likelihood estimates �* from many repeti-
tions of the N pulling experiments.

Figure 1 illustrates these findings by means of the ex-
ample from Eqs. �2� and �3�. Since two-dimensional distri-
butions are difficult to compare graphically, we focus on the
marginal distributions for the first component � of �
= �� ,�� �the findings for � are similar�. The close agreement
of the 15 thin lines with the histogram in Fig. 1 very con-
vincingly illustrates our two conclusions above.

In view of the argument below Eq. �9�, it seems intu-
itively quite plausible that the maximum of the likelihood �*

should be the best possible guess for the unknown true pa-
rameters �0. A more rigorous line of reasoning starts with an
arbitrary “recipe” of estimating the true parameters �0 from
a given data set f, formally represented by some function
�̃�f�. The only assumption is that this recipe is unbiased, i.e.,
upon repeating the same experiment many times, on the av-
erage, the true parameters are recovered, ��̃�f�=�0. By gen-
eralizing the well-kown Cramér-Rao inequality �11�, which
in turn is basically a descendant of the Cauchy-Schwarz in-
equality, one can show �12� for any such recipe �̃�f� that

���̃ − �0���̃ − �0�† − �NH�−1 � 0, �13�

i.e., the matrix on the left-hand side is non-negative definite.
Comparison with Eq. �12� yields our third main conclusion:
There is no unbiased estimator �̃ of the true parameters �0
which on the average outperforms the maximum likelihood
estimate �*.
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FIG. 1. Solid histogram: Numerically determined distribution of
the first components of the maxima �*= ��*,�*� of the likelihood
from Eq. �1� for 10 000 computer experiments. For each of them,
N=400 rupture forces f were sampled according to Eq. �3�, 100 for
each of the four loading rates �v=50,200,1000,5000 pN /s and
with true parameters �0=−5 and �0=0.1 pN−1. These are typical
numbers in real experiments �1�. Thin lines: The likelihood from
Eq. �1� for the first 15 of the 10 000 experiments after integrating
over �, shifting the maximum to �0, and normalizing �some are
almost indistinguishable�. Dotted histogram: Distribution of the es-
timates for � according to the standard method, as described in the
main text.
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The remaining possibility that a biased estimator may be
even better is rather subtle to treat rigorously, but intuitively
this seems quite unlikely. Furthermore, in the above conclu-
sion we exploited the relation in Eq. �12� which is strictly
correct only for asymptotically large N. Finally, the criterion
of minimizing the left hand side in Eq. �13� itself is in prin-
ciple also debatable, but hardly in practice. Being unable to
make any further progress along these lines, we directly
compared the maximum likelihood estimate with other
known recipes of evaluating single-molecule rupture data
�1,2,4,5,7,8,13�. In all cases we found that the maximum
likelihood was superior.

IV. THREE CASE STUDIES

We now describe three case studies. �1� In single-
molecule force spectroscopy, the most widely used recipe for
estimating parameters consist of the following steps. �i� Fit a
Gaussian to the observed rupture force distribution for a
fixed pulling velocity v and approximate the most probable
rupture force f* by the maximum of that Gaussian. �ii� Plot
f* for different v versus ln�v� and fit the resulting points by
a straight line. �iii� Assume that the model �2� and �3� is

applicable and deduce its model parameters �= �� ,�� from
the slope and the axis intercept of the straight line as de-
tailed, e.g., in Refs. �1,2,4,5,13�. We have applied this pro-
cedure to each of the 10000 experiments in Fig. 1 and plotted
the distribution of the resulting estimates for � in Fig. 1. The
conclusion is that the maximum likelihood estimate repre-
sents a substantial improvement compared to the so far
“standard method” of data evaluation in this field.

�2�. Generalizations of the rate from Eq. �2� of the form

k�f� = �1 − 	�f/
�1/	−1e�+
�1−�1 − 	�f/
�1/	� �14�

with three model parameters �= �� ,� ,
� have recently at-
tracted considerable interest �14�. Here, � and � have the
same physical meaning as in Eq. �2�, 
ªEb�0� /kBT stands
for the force-free activation energy barrier in units of the
thermal energy kBT, while 	� �1 /2,2 /3,1� labels three dif-
ferent models: For 	=1 the parameter 
 drops out and one
recovers Eq. �2�, 	=2 /3 reproduces the Kramers rate for a
cubic reaction potential, and 	=1 /2 corresponds to a para-
bolic potential well with a cusp barrier �14�. The resulting
rupture force distribution

FIG. 2. Rupture force distribution for different loading rates �v. Histograms: Numerically generated rupture forces according to Eq. �15�
with 	=2 /3, �0=−5, �0=0.1 pN−1, 
0=15. For each �v, we sampled 500 forces, i.e., N=2000. Solid: maximum likelihood fit p1�f ��*,v�
according to Eq. �15� for 	=1 /2 and 2 /3 �not distinguishable in this plot�. Dashed: same for 	=1. Upon repeating the entire numerical
experiment, the resulting plots always look practically the same.
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FIG. 3. Same as Fig. 2 but for experimental rupture forces from Ref. �8�. The number of rupture events for each loading rate is indicated
in parentheses. Upper row: Experimental data �histograms� and maximum likelihood fit p1�f ��*,v� according to model �14� and �15� for
	=1 �dashed�, 2 /3 �solid�, and 1 /2 �dash-dotted�. Lower row: Experimental data �histograms�, maximum likelihood fit p1�f ��*,v� accord-
ing to model �16� �solid�, and best fit according to the standard method, as described in the main text �dotted�.
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p1�f ��,v� =
k�f�
�v

exp�−
e�

�v

e
�1−�1 − 	�f/
�1/	� − 1

�
� �15�

with k�f� from Eq. �14� can be determined analogously to
Eq. �3�. There is an ongoing debate in the literature about
which of the three models is most appropriate to evaluate
experimental rupture data �14�. Taking for granted that one
of the three models approximates the “truth” satisfactorily,
choosing �=�* is—according to our above conclusions—
the closest one can get to the “full truth” on the basis of one
given data set f. In case of disagreement about the true 	
value, a fully objective selection criterion seems impossible
to define in principle. In practice, the usual criterion is the
comparison with the basic true quantity observed experimen-
tally, namely, the distribution of rupture forces. In view of
Fig. 2, we conclude that under typical experimental condi-
tions it is absolutely impossible to decide whether 	=1 /2 or
	=2 /3 is better, and even 	=1 performs almost as well �15�.

�3�. In Fig. 3 the same comparison as in Fig. 2 is repeated,
but now for real experimental data from Ref. �8�. Again, the
models �14� and �15� with 	=1 /2 and 2 /3 are hardly distin-
guishable; 	=1 differs slightly more, while the standard
method yields a completely different best fit. However, none
of them satisfactorily describes the experimental reality. The
same incompatibility is recovered for all other experimental
data sets we analyzed so far �see also Ref. �7��. An almost
perfect agreement �within the statistical uncertainty of the
experimental data� is obtained by means of yet another re-
cent extension �7� of the model �2� and �3�, considering the
parameter � itself as randomly sampled from

���� = �2���
2�−1/2 exp�− �� − �̄�2/2��

2� , �16�

resulting in a model with three parameters �= �� , �̄ ,���.
Possible reasons for such a heterogeneity of the dissociation
rate are uncontrollable variations of the experimental condi-
tions or of the complicated biomolecular complex itself �7�.

V. CONCLUSIONS

The maximum �* of the likelihood from Eq. �1� is the
best possible estimate for the unknown model parameters �,
given an appropriate model and a �sufficiently large� set of
rupture forces f. The accuracy of this estimate follows from
the dispersion of the �approximately Gaussian� likelihood
peak about �*. The procedure is extremely simple and gen-
eral. For example, the pulling velocities vi may be all the
same, all different, or distributed in any other way, and the
pulling force f�t� may or may not increase linearly with time
�only in the first case is there a well-defined loading rate �;
cf. Eq. �2��.

By means of a least-squares fit one gets—by definition—
the best possible agreement between theory and experiment
with respect to any given deviation measure. A typical ex-
ample is to optimize the agreement between experimental
and theoretical rupture force distributions. In particular, the
resulting agreement with the data in Figs. 2 and 3 would be
�at least slightly� better than for any of the depicted theoret-
ical lines. However, our present goal is not to optimally fit
rupture force distributions but rather to fit the unknown
model parameters as closely as possible: they are the quan-
tities of prime interest, and any other kind of fitting proce-
dure is mainly an intermediate step in order to estimate them.
Using the rupture force distributions to fit parameters seems
natural, but our paper shows that one can do better. Our
present comparison of the rupture forces in Figs. 2 and 3
serves a different purpose: once the parameters are estimated
as well as possible according to our method, the resulting
rupture force distributions can be used as an independent
consistency test for a given hypothetical model.
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